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ABSTRACT 

( 3 d O L  
This report  descr ibes  the analysis and design synthesis of the supporting s t ructure  

of a stabilized platform, the pr imary objective being to minimize the weight of the sup- 
porting gimbals. The analysis resulted in  an over-all  weight reduction of 24. 53 pounds 
(calculated) in the supporting s t ructure  (original weight - 54.41 pounds) with only a 
16 per  cent reduction (calculated) in the lowest system response frequency. 

Considered in the analysis were s t resses  and deflections for an 8-g linear accelera- 
tion, The calculations were car r ied  out with the aid of a Bendix G-20 digital computer. 
A generalized stiffness-matrix computer program was writ ten for  this problem and was 
used to calculate the displacements for  various loading conditions. The s t r e s ses  were  
calculated by means of an additional program used in conjunction with the st iffness-matrix 
program. The redesigned s t ructure  was then analyzed for response frequencies. 

This r e sea rch  program was initiated in July, 1962, under contract with NASA and 
covers  work performed during the period July 1, 1962, to December 28, 1962. N ? ’ c f L - ’ L  

B A T T E L L E  M E M O R I A L  I N S f l T U T E  
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SPACE -VEHICLE STABILIZED-PLATFORM 
GIMBAL-SYSTEM WEIGHT-REDUCTION STUDY 

PHASE I. DESIGN O F  RING GIMBALS 

J. E. Sorenson, J. C. Gerdeen, L. E. Hulbert, 
T. J. Atterbury, andG.  M. McClure 

INTRODUCTION 

The importance of reducing the dead weight in the final stages of ballistic miss i les  
and space vehicles becomes apparent when one examines the launching weight-to-payload 
ratios. F o r  a two-stage ballistic missi le ,  this ratio is approximately 42. ( I )*  This im- 
plies that a 1-pound reduction in the payload resul ts  in a 42-pound reduction in the 
launching weight of this type of vehicle, 
velocity, this ratio is much higher. 
satellite resu l t s  in  an addition of 10,000 pounds to the launching weight of the vehicle. 
Therefore,  it appears that any reduction in the payload dead weight resul ts  in  a sub- 
stantial  reduction in  the final vehicle weight, 

When the payload must be accelerated to  orbi ta l  
It has  been stated(1) that each additional pound of 

With this  emphasis placed on achieving minimum weight, c r i t i ca l  examinations a r e  
made of the design of each component. 
the stabilized platform appear to have more  weight than is necessary to perform the i r  
function. 

In the Saturn vehicle, the supporting gimbals of 

The ST- 124 inertial  platform weighs approximately 110 pounds (excluding the 

This r e sea rch  
hemispherical  covers). 
proximately 49.5 per  cent o r  54. 4 pounds (excluding the trunnions). 
program was undertaken to reduce the weight of these supporting members  as much as 
possible without exceeding predetermined s t ress  o r  stiffness limits at any point in the 
assembly - at the same t ime,  keeping the over-all dimensions of the iner t ia l  platform the 
same ,  and retaining all of the present components (support trunnions, gyros,  electronic 
components, etc. ) 

The supporting structure (gimbals and f rame)  accounts for  ap- 

After an examination of the problem, it was decided to channel the r e sea rch  effort 
into three  paral le l  studies: 

0 A mater ia l s  investigation 

0 An engineering study 

0 A design synthesis using stress, deflection, and vibration programs 
writ ten for  Battelle 's  Bendix G-20 digital computer. 

Various mater ia l s  were  studied to determine the best  one for a minimum weight 
The problem was not simply to select the mater ia l  with the best  strength-to- design. 

weight ra t io ,  but to examine all of the mechanical properties and methods of fabrication 
and determine their  relative importance in this design. 

* References are listed at the end of this report. 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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The engineering study consisted of examining all the components of the ST- 124 
inertial  platform and their  relation to  the size of the supporting gimbals. 
analysis of the gimbals was undertaken, using available theoretical  load- s t r e s s  relations. 
This was necessary to insure that the computer study resulted i n  a practical  design. 
The f rame with its covers was considered a spherical  shell. Design was based upon 
theory of shells. 

Also, a s t r e s s  

The design synthesis began by writing the necessary computer programs to cal- 
culate s t r e s s ,  deflection, and natural  frequency for  various loading conditions. After 
coinpletion of these programs,  resul ts  f rom the engineering study were used fo r  the f i r s t  
typical design. 
various loading conditions with the aid of these programs. 
data ( s t r e s ses ,  deflections, and response frequencies), modifications were made in the 
design at  points of high and low s t r e s s  and a new set of input data was formulated. The 
s t r e s ses  and deflections were then calculated for this revised design. 
process continued until the cr i t ical  design factors  reached their  limiting values. 

The s t r e s ses  and deflections in this design were then calculated fo r  
After examination of these 

This iteration 
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RESULTS AND RECOMMENDATIONS 

As a result  of the analysis, the recommended configuration of the s t ruc tura l  com- 
ponents is shown on Drawings 1001, 1002, 1003, and 1004 attached to this report. 

The mater ia l  recommended fo r  the gimbals is beryllium. A s  will  be discussed 
la ter  in this report ,  stiffness ra ther  than strength is the controlling factor in  the design. 
Beryllium with its high stiffness-to-weight ratio is the best  available mater ia l  for  a 
minimum weight design. 

The over-all  weight reduction achieved is 24. 53 pounds. This represents  a 50.5 
per  cent reduction in the weight of the s t ructural  components analyzed, 
mize the weight of the supporting frame,  the hemispherical  covers were considered as 
par t  of the load-carrying structure.  That is ,  the f rame was considered as a spherical  
shell  in the calculations. Aluminum is recommended for  the f rame because it is rela- 
tively easy to fabricate into any shape. Alloys f rom the 5000 se r i e s  a r e  prefer red  for  
the wrought components because of their  formability, weldability, and strength. F o r  
sand o r  permanent-mold cast  par ts  with thin sections,  a high-silicon grade, such as 
356 is suggested. 

In order  to mini- 

Table 1 gives a comparison of the weights of these s t ructural  members ,  

TABLE 1. WEIGHTS OF THE PRIMARY STRUCTURAL MEMBERS 

Weight, pounds 
Present  P ropo sed Net 

Member Design De sign Reduction 

Inner gimbal casting (Be) 5. 87 
Middle gimbal casting (Be) 7.93 
Outer gimbal casting (Be) 5.96 
Redundant gimbal casting (Be) 12. 30 
Frame (Al) 22.35 

TOTALS 54.41 

5.87 
3. 02 
2. 65 
5.44 

12.90 
29.88 
- 

-- 
4. 91 
3. 31 
6.86 
9.45 
24.53 

The following sections discuss the important factors  considered in  the design, 

S t resses  and Deflections 

The s t r e s s e s  resulting f rom an 8-g linear acceleration a r e  shown for  each gimbal 
i n  Appendix C (Figures  C-2 to C-12). The deflections at various points in the assembly 
a r e  shown in Tables C-1 to C-8 in Appendix C. Both s t r e s ses  and deflections a r e  shown 
f o r  acceleration in each of the three directions X, Y, and Z. Fo r  a specific point in the 
assembly,  the maximum possible pr imary s t ress ,  due to bending moments,  occurs  for  a 
par t icular  orientation of the acceleration vector. 
computed f rom the equations given in Appendix C. 
5000 psi  (neglecting any s t r e s s  concentrations) in the proposed assembly. 
assembly the  maximum calculated bending s t r e s s  is less  than 2500 psi. 

This s t r e s s  is not shown but can be 
However, at no point does it exceed 

In the present 
With the use of 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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flanged sections, a secondary flange bending s t r e s s  resul ts  with torsional loads. 
s t r e s s  occurs a t  the junction of the flanged section with the heavier trunnion a r e a  in  the 
middle and outer gimbals. 
trunnions o r  the amount of external torsional res t ra int  applied to the gimbal. 
s t r e s s  i s  a maximum when the acceleration is normal  to the plane of the gimbal ( X  direc- 
tion for  the middle gimbal and Y direction fo r  the outer gimbal). The possible range of 
this s t r e s s  is 3000 psi (rigid trunnions) to  11,000 psi (flexible trunnions) for the middle 
gimbal, and 2000 psi to 10,000 psi  for the outer gimbal. 
completely flexible and therefore the value of this s t r e s s  will be less  than the maximum 
value shown. 

This 

The value of this s t r e s s  depends on the stiffness of the 
This 

However, the trunnions a r e  not 

These higher-stressed a reas  a r e  marked on the drawings. Because of the notch 
sensitivity of beryllium, it i s  important to avoid creating any s t r e s s  concentrations in 
the vicinity of these high s t resses .  Therefore,  ca re  should be exercised in the fabrica- 
tion of these gimbals to avoid placing any notch, hole, o r  sharp  change in section in 
these a reas .  

A comparison of the maximum displacement of the inner gimbal in  the present and 
proposed designs is  shown in Table 2. 
redundant gimbal and i s  due to the relatively low torsional stiffness of this member.  

A large portion of this displacement occurs  in the 

TABLE 2. DISPLACEMENT O F  THE INNER GIMBAL FOR 
AN 8-G LINEAR ACCELERATION IN THE tY 
DIRECT ION 

Relative Stiffness Displacement, inches 
of Trunnions P resen t  Design Proposed Design 

Flexible 3784 5325 

Rigid 807 1254 

The te rms  "flexible" and "rigid" a r e  used to describe the relative stiffness of the 
trunnions. 
limits. 
then approach the values shown for rigid trunnions. 
nions a r e  relatively flexible, the s t r e s ses  and deflections will approach the values given 
fo r  flexible trunnions. 

The s t r e s ses  and deflections for each condition represent  the upper and lower 
F o r  example, if  the trunnions a r e  very  stiff, the s t r e s s e s  and deflections will 

At the other extreme,  if the trun- 

Response Frequencies 

The response frequencies of the gimbals fo r  various mode shapes a r e  shown in 
The lowest response frequencies of the systems a r e  shown in Table 4. Table 3. 

If the system response frequency is lower than desirable ,  two possibilities exist  
for  increasing it without inflicting a severe weight penalty on the system. 
portion of the deflection, when the acceleration is in the y direction, is due to the low 
torsional stiffness of the redundant gimbal. When the loads a r e  normal  to the plane of 

F i r s t ,  a large 
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I TABLE 3. LOWEST RESPONSE FREQUENCIES OF THE GIMBALS 

Frequency, cps 
X Y Z 

Present  Proposed Present  Proposed Present  Proposed 
Gimbal Design De sign Design Design Design Design 

Simply Supported at Two Points (180 Degrees Apart) 
With No Supported M a s s  

Middle 
Outer 
Redundant 

1200 464 1375 1052 1195 
2060 1900 1685 9 68 2340 
1055 672 39 0 368 925 

Simply Supported at Two Points (180 Degrees Apart1 
With One-Half the Mass of the Inner Components 

UWILLG~~LLLOLCU OL r u i i i L 3  7 u  u c g ~ c t z a  x L U I I ~  c ~ i e  auppur~s 

1001 
2140 

673 

Middle 58 1 231 643 
Out e r 760 626 560 
Redundant 368 235 153 

520 622 514 
302 715 640 
138 41 5 2 69 

TABLE 4. LOWEST RESPONSE FREQUENCIES O F  THE SYSTEM 

~ -~ ~ 

Relative Frequency, cps 
Stiffness X Y Z 

of the Present  Proposed Present  Proposed P r e  sent P ropos ed 
Trunnions Design De sign Design Design De sign Design 

Flexible 288 163 144 121 311 224 
Rigid 358 246 3 09 254 388 285 

L__ 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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the gimbal, the gimbal sections a r e  subjected to torsional loads and, i f  allowed to twist, 
a large deflection wi l l  result  at the points of loading. 
can be increased by increasing the stiffness of the trunnions, especially those of the 
redundant and outer gimbals. This would have the same effect as increasing the tor- 
sional stiffness of the redundant gimbal, Second, the redundant gimbal itself could be 
modified in such a manner as to increase its torsional stiffness. 

Therefore,  the response frequency 

The torsional st iffness of a beam with a rectangular c r o s s  section of width b ,  and 

T - b h3G P s = - -  
e L 

thickness h,  is(2): 

where 

S = torsional stiffness 

T = torque, in-lb 

8 = angle of twist, radians 

L = length of beam, inches 

p = function of b /h  

b / h  = 1, /3 = 0. 141 

b / h  = 10, p = 0.312 

b / h  06, /3 = 0 . 3 3 3  

2 G = shearing modulus of elasticity, lb/in. . 
This equation indicates that the thickness, h,  of the redundant gimbal should be 

increased as much as possible in o rde r  to increase the tors ional  stiffness in the most  
economical fashion. Calculations indicate that if the redundant gimbal c ros s  section 
approximates a rectangle, 2-1/2 x 5/8  inch, the lowest sys tem response frequency could 
be increased by 40 per cent over  that of the proposed design and 16 per  cent over  the 
present design. 
proposed design, 
should it ever  be required. 

This magnitude of increased stiffness is not believed necessary f o r  the 
This is pointed out as a simple method to increase system frequency 

F rame  Design 

The frame was designed as a portion of a spherical  shell. F o r  such a shell ,  made 
of aluminum and having a spherical  diameter of 19. 50 inches and a thickness of 0. 050- 
inch, the maximum deflection, rotation, and s t r e s s  would be: 

inches Maximum deflection (w) = 1260 x 

Maximum s t r e s s  (u) = 4920 ps i  

Maximum rotation (A@) = 194 x 10-6 radians (40 seconds). 
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The maximum deflection and s t r e s s  occur in the shell  next to the Z pivot supports for an 
acceleration of 8 g at an angle of approximately 60 degrees  to the Z axis. The maximum 

A natural  I rotation is for the Z pivot support for an 8 g acceleration in the X direction. 
frequency, fn,  of at least  350 cps could be expected. I Conservative calculations were 
conducted to determine w, r, A$, and fn. 
lower than above, and actual fn would be expected to be higher. 

Actual w, u, and G$would be expected to be 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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MAT ERIA I S  INVESTIGATION 

Data on high-strength alloys which may have applications in this design were 
assembled. 
attractive because of its high strength-to-weight and elastic modulus-to-weight ratios. 
The preliminary study resulted in five candidate materials.  
properties a r e  shown in Table 5. 
e r ed  in this investigation. 

Par t icular  emphasis was placed on beryllium(3), since it appears very  

The mater ia l s  and their  
Flexibility in  fabrication techniques was also consid- 

A comparison of the five mater ia l s  was f i r s t  made using the material-index ap- 
This comparison, using the strength-to-weight and modulus-to-weight ratios proach. 

a s  the indexes, is shown in Table 6. 

The effect of the section geometry on the relative weights of rings fabricated f rom 
the different materials is shown in Table 7. 
with the same load-deflection (in-plane loading) character is t ics  and second for  rings 
with the same load-yield strength character is t ics .  
used in these comparisons. 

The comparison was made f i r s t  f o r  r ings 

The propert ies  given in  Table 5 were 

Another factor that must  be considered in this design is the natural  frequency of 
the gimbals. Since the natural  frequency is a function of the mass and deflection, the 
relative weights shown for  rings with the same load-deflection character is t ic  a r e  also 
the relative weights of rings with the same natural  frequency (in-plane mode shapes). 

On the basis of these comparisons,  it appears that beryllium is the best mater ia l  
However, when the (for minimum weight) when deflection o r  vibration is the cri terion. 

strength is the cri terion, titanium appears  to be the best  available mater ia l  for  a 
minimum-weight design. 
the most important design c r i te r ia .  

It is shown la te r  in the study that vibration and stiffness a r e  

Machining the rings f rom hot-pressed blocks is expected to be the most satisfactory 
method of fabrication within present technology. Higher strength forms  of beryll ium 
now becoming available do not offer particular advantages because the strength is not 
fully utilized. Because of beryllium notch sensitivity, insofar as possible,  holes,  dis- 
continuities, etc. , should not be located in the higher s t r e s sed  a r e a s  marked on the 
drawings. 

I N S T I T U T E  
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TABLE 6. COMPARISON O F  MATERIALS USING PHYSICAL AND 
MECHANICAL PROPERTIES 

Y ie Id St r eng t h- to- 
Weight Ratio Stiffness-to- Weight Ratio 

106 psi 106 psi 
Materials lb in. -3  lb in. -3  

Beryll ium (QMV) 404 642 

Magnesium (AZ80A-T5) 43 0 100 

Aluminum (7075-T6) 614 102 

Steel (4340 HT260) 766 102 

Titanium (B- 12OVCA) 976 92  

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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I 
TABLE 7. RELATIVE WEIGHTS OF RINGS OF DIFFERENT MATERIALS 

1 

Relative Weight 

a a 

I changed by I changed by I changedby 
t Material  varying a varying b varying d 

Beryllium (QMV) 
Magnesium (AZ 8 OA- T5) 

I Aluminum (7075-T6) 
I Steel (4340 HT260) 

Titanium (B- 12OVCA) 

Beryllium (QMV) 
Magne s i u m  (AZ 80A- T5) 
Aluminum (7075-T6) 
Steel (4340 HT260) 

Same Load(a)- Deflection Character is t ics  

1. 00 
1. 82 
2.43 
4. 82 
3. 60 

1. 00 
6. 42 
6. 31 
6. 26 
7. 00 

Same Load(a)-Yield Strength Characterist ics 

1. 00 
0.95 
0.99 
1.49 

1. 00 
0. 94 
0. 66 
0. 52 

1. 00 
2. 50 
3. 09 
5. 85 
4. 26 

1. 00 
0.95 
0. 87 
1. 05 

Titanium (B- 12OVCA) 1. 04 0. 41 0. 76 

(a) External load only (weight of ring assumed small in comparison to external load). 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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ENGINEERING STUDY 

General 

The present assembly was studied with the intention of minimizing any modifica- 
tions in the gimbal components that might resul t  f r o m  reductions in the size of the gimbal 
section. It i s  possible that, by reducing the section size, some components may have to 
be relocated o r  the method of mounting modified. 
tions on the section geometry before completing the s t r e s s  analysis, these modifications 
may be minimized. 

By placing cer ta in  physical res t r ic -  

These restrictions result  f rom the following: 

(1) The over-all s ize  of the present assembly must be maintained. 
s ize  of each gimbal is restr ic ted in the radial  direction because of 
clearances between gimbals. 

The 

(2) The support trunnions used in the present assembly will be used in 
the new design. 
ring mater ia l  at these points in order  to mount the trunnions. 

Therefore, there  must be a sufficient amount of 

(3) Various components a r e  mounted to the gimbal between the support 
points. 
these components. 
limited because of the presence of threaded holes. 

The size of the gimbal must be such as to accommodate 
Also, the minimum thickness of any section is 

The section geometry a l so  depends on the types of loads to which it i s  subjected. 

This suggests the use of tubular o r  
A minimum-weight design for  a member subjected to bending only would consist of a 
section with a high section modulus-to-area ratio. 
flanged sections (I, channel, etc. ). 
torsion, the torsional shearing s t r e s s  and secondary flange bending s t r e s s  (due to 
torsion) can become important. 

However, when flanged sections a r e  subjected to 

S t ress  Analysis of Middle, 
Outer and Redundant Gimbals 

Because of the complexity of the geometrical requirements fo r  the inner gimbal, it  
appears  that the weight reduction that could be achieved he re  is a rather  small  per  cent 
of the total weight (probably l e s s  that 1 per  cent without redesign and relocation of the 
inner gimbal components). It was therefore decided to maintain the present design of 
this gimbal and concentrate the research  effort on the three  other gimbals and the sup- 
porting frame.  

The middle, outer, and redundant gimbals a r e  approximate ring s t ructures .  
equations which apply to rings will therefore yield approximate solutions f o r  these 
gimbals. 

The 

The f i r s t  step in the analysis was to define the loads acting on each gimbal. The 
In most general type of loading, resulting f rom inertial fo rces ,  is shown in Figure 1. 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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A =  Area of section 
Sr= Section modulus 

about r axis 
Sz = Section modu Ius 

about z axis 

FY 

lI 

Acceleration - 
0 

4 43512 Element A 

FIGURE 1. GENERALIZED LOADING CONDITIONS FOR A RING SUBJECTED 
TO INERTIAL FORCES 

B A T T E L L E  M E M O R I A L  I N S f l T U T E  
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o rde r  to simplify the analysis, the forces  were  resolved into components acting in the 
direction of the f r a m e  reference axis (Figure 2). 
Figure 2 may be  fur ther  resolved into simpler subcases involving only one type of load. 
Figure 3 shows the resulting seven subcases. 
f rom each one of these subcases are given in Reference (4). 

Each of the three  cases  shown in 

The equations f o r  the internal forces  

The nomenclature used in the following analysis is either given in Figure 1 o r  is 
included where necessary.  

At a specific point in the ring, the equations f o r  the internal forces  a r e  of the f o r m  
(after algebraic summation f r o m  the appropriate subcases): 

M, = [ (C1FXR t C2wR 2 t C3My) sin 8 

t (C4F,R + C5wR2 t CgM,) cos  81 cos Y 

Vz = [C27Fx t C28wR] sin Y , (6) 

where C, a r e  constants pertaining to  a par t icular  point in  the ring. 
values f o r  F,, R, w, %, and %, the equations may  be written: 

Substituting the 
I 

M, = [ K i  sin 8 t K 2  COS e ]  COS Y 

Tt = [K3  sin 8 t K4 cos €31 cos Y 

V r  = [Kg S i n  8 t K 6  COS e ]  COS Y 

M, = K7 sin Y 

Mt = K8 s in  Y 

V, = K9 sin Y ,  

where K n  a r e  now constants f o r  a specific point in the ring. 
B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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For  rectangular, channel, o r  I sections, the normal s t r e s s  at the outer corners  
(most extreme fiber) is: 

Mz Tt Mr 

Sz A Sr  
r J = -  t-t- 

or  
[ K l  sin 0 t K 2  cos O ]  [K3 sin 0 t K 4  C O S @ ]  

cos Y A 
u =  cos Y t 

SZ 

K 7  

Sr  
t - sin Y .  

This s t r e s s  is a maximum when 8 = Om, and Y = Ym, 

such that 

and 

- 1 = o  

(7)  

In order  to simplify the calculations f o r  em, it is assumed that the s t r e s s  due to  
Tt MZ 

SZ 

T+ is zero. This i s  valid if - << -. 
A 

a0 cos Y - =  [ K 1  cos 0 - K 2  sin 01 - 
a@ sz 

7T The equation i s  satisfied when Ym = - or 
2 

When Ym = ~ / 2 ,  the acceleration i s  in the z direction, and the forces  Tt and M, a r e  zero,  
Therefore, the general solution i s  given by  Equation (10). 

Satisfying the second condition (Equation 9), 
a0 sin Y 

aY sz 
- =  - [K1 sin 0 t K 2  cos O ]  - 

sin Y K 7  

A Sr  
- [ K 3  sin 0 t K 4  cos O ]  - t - cos Y 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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a\y a “I 
K7 

Sr 
t - cos Ym = 0. 

This condition i s  satisfied when 

Ym = tan’ 

Equation (7) may also be written, 

where 

6gx = bending s t r e s s  a t  point under consideration f o r  acceleration in 
x direction. 

6 = bending s t r e s s  at point under consideration for  acceleration in 
By y direction. 

UgZ = bending s t r e s s  at point under consideration fo r  acceleration in 
z direction. 

= tensile s t r e s s  at  point under consideration fo r  acceleration in 
x direction. 

‘T x 

I 

6 = tensile s t r e s s  a t  point under consideration fo r  acceleration in 
Ty y direction. 

The equations fo r  O m  and Y m  become 
_-_ 

and 

aBz 1 .  - 1  Y ,  = tan 
[‘Bxy’ ‘Txy 

The maximum stress ,  Urnax, a t  a specific section in the ring occurs  when the orientation 
of the acceleration vector is 0, and Ym, and is 

t [ uTx sin Q, “Ty cos COS y m t  OBz sin Ym . 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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At any other orientation of the acceleration vector, the f iber  s t r e s s  at this section is l e s s  
than that given by Equation (14). 

The shearing s t r e s s  was computed in a similar manner. 
I 

I 

This is the method used to make the first approximation fo r  the various c r o s s  
sections. 
and I sections) due to Mt. 
computer. 
the physical restrictions.  
in the computer analysis. 

Neglected in the calculations was the secondary flange bending (for channels 
This will be accounted f o r  in  the analytical study using the 

Vibration was also neglected in this approach but is included 
Also in this design, limits were  placed on the size of the sections because of 

The values fo r  Cn a r e  given in Appendix A f o r  15-degree increments around the 
ring. 

S t ress  Analysis of F r a m e  

Weight reduction on the f r ame  was considered by changing its configuration f r o m  
that of a ring to that of a segment of a spherical shell in order  to take advantage of in- 

spherical  covers  were  considered together to constitute a complete spherical  shell with 
two trunion openings and additional reinforcements f o r  assembly and mounting purposes. 
F o r  ease  of fabrication of the shell, a l u m i n u m  was considered as the material .  Here  
again beryllium would be the best  choice of mater ia l  f r o m  the property-index standpoint, 
but it is not within present  technology to fabricate the shell s t ructure  of this material .  
The mater ia l  constants f o r  the analysis were: 

_ - - - -  - - J  - 2 - 1 ~ : ~ -  x---  J - . . L ~ -  -....-.-t..-s TP, = ; A  tha = , n r ~ l r r ~ i ~  the  frame and the adinininq 
0 - - - - 2  - -  - - - -. - - - - 

Modulus of Elasticity (E) = 10 x 10 6 ps i  

Poisson 's  ratio (p) = 0. 33 

Density (p )  = 0. 101 lb/in.  3 

(The analysis would a l so  apply if the f rame portion of the shell were  made of 
&MAG 35 which has  mater ia l  constants nearly the same as those of aluminum. ) 
shell dimensions used f o r  calculation were: 

The 

Spherical shell radius (a) = 9. 75 in. 

Outer trunion radius (b) = 3. 12 in. (16) 

Shell thickness (t) = 0. 050 in. 

(The thickness t = 0.050 inch was found to  give sufficiently low s t r e s s  and deflections, 
and high natural  frequency. Calculations a re  i l lustrated fo r  this thickness. ) 

To obtain an indication of stress level, representative membrane s t r e s ses  were  

Na, and 
first calculated. 
Reference (5), pages 60-66. 

she l l ' s  own inertia load p where: 

Method of calculation was similar to that described by Fliigge, 
Figures  4 and 5 show the membrane forces  N 

N o @  around the 0 = 0-degree and 0 = 90-degree meridians,  respectively, P'  rom the 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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p=-- pt Ay- lb/in. 2 
g 

Ay = acceleration in Y 
direction = 8 g . 

The maximum membrane forces  (maximum at  the supports) in Figures  4 and 5 corre-  
spond to membrane s t r e s ses  of only 20 psi. 

Figure 6 shows the membrane forces  f rom attached inertia loading, of total load P. 
For  an inner mass of 65 pounds plus the weight of the tZ and -Z pivots, about 3 and 
5 pounds respectively, the inertia load P for  8-g acceleration is: 

(19) P = 8 (65 + 3 t 5) = 8 (73) = 584 l b .  

The corresponding membrane s t r e s ses  f o r  this load are on the order  of 1000 psi  
maximum. 

The membrane theory gives only a partial  indication of the s t r e s s  level. 
shell theory (membrane plus bending) must  a lso be  applied to determine the bending 
effects around the pivot supports through which the attached inertia loading is t rans-  
mitted to the shell. 
creasing distance f r o m  support), effects f rom opposite supports do not superimpose, and 
can be calculated by considering loading only on one support. 
a r e  shown in Figure 7. 
be considered to be quite stiff compared t o  the shell. 

General 

Since the bending effects are locaiizea t m e y  U L ~ :  vuL ~ a p ~ . E l  ..:::- L- 

The loadings considered 
Because of the la rge  thickness of the pivot support (ring), it  can 

FIGURE 7. TYPES O F  LOADINGS AT PIVOT 
SUPPORT ON FRAME 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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The loading FZ of Figure 7 is axisymmetric. The other loadings FX and M a r e  
antimetric (cosine- sine variation). 
outlined in Appendix B. 

These loadings were analyzed by the procedures 
Calculations gave the following results: 

F rom FZ: 

Deflection, w = -0.037 x FZ 

Stress, is9 = ~6.24 FZ - 8.90 FZ 

Stress,  Q = i o .  864 FZ t 2.94 FZ . e 
From FX for  8 = 0 degrees: 

Deflection, w = -0. 79 x Fx 

Stress,  a9 = h3.78 FX + 2.08 Fx 
Stress,  be = *l. 53 Fx + 0.69 Fx 

F r o m  M for  8 = 0: 

Deflection, w = 9. 27 x 10-6 M 

Stress,  a@ = k7.90 M t 1.71 M (22) 

Stress,  be = *2.43 M t 0.56 M , 
where the upper sign on bending component of s t r e s s  r e fe r s  to the outside of the ahell and 
the lower sign refers  to the inside of the shell. 

The relations between the deflection and s t resses ,  and the fo rces  FZ and Fx and 
the moment M can be used to determine the cr i t ical  angle #'  a t  which the deflection or 
the s t r e s s  will be maximum. F rom Figure 7, if a force F ac ts  at an angle 9' then: 

The moment M is due to Fx acting a t  a moment a r m  a t  the support. 
the shell to the center of the bearing location was estimated at  0.31 inches max. 

The ditstance 2; f r o m  

The deflection w and s t r e s s  u# f r o m  the three loadings add to produce maximurn 
magnitudes at  8 = 180. Adding w and a9 f r o m  Equations (20), (21), and (22) f o r  8 = 180, 
and introducing Equation (23) gives: 

w = -0.037 x F sin #' -b 0.79 x 10-6 F COS 9' 

-9.27 x (0.31) F COB 9' 

I N S T I T U T E  
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1 
and 

I 

I 0~ = (r6. 24 -8. 90) F sin @ '  t (T3. 78 -2. 08) F cos 4)' 

-I- (F2.43 -0. 56) 0. 31 F COS 0' 

o r  

w = -3. 7 x F sin @' - 2.09 x F cos 0' 

0 ~ = - 1 5 . 1 4 F ~ i n ~ ' - 6 . 7 9 F c O S  4 ) ' ,  

where the upper sign h a s  been taken f o r  the bending components of 0 The values of @ '  
@* 

I which maximize these expressions are: 

@' = 60.5 degrees f o r  maximum x 

@' = 65. 7 degrees f o r  maximum 00 . 
F o r  an  inertia load P of 584 pounds [Equation (19)] attached to two supports: 

2 = - r  - Y , ,  y".- ---. 1. 1 - --- 

Substituting @' from Equation (25) in Equation (24) f o r  F = 297 pounds resul ts  in: 

Maximum w = -4. 25 F x lom6 =: -4.25 (297) x = -0.00 126 

Maximum G = - 16.59 F = - 16.59 (297) = -4920 psi. 
@ 

F o r  F in the opposite direction, the maximum deflection and s t ress ,  of course, would be 
opposite in sign o r  0.00126 inches and 4920 pounds pe r  square inch. 

The maximum rotation, A @ ,  at a pivot would resul t  f r o m  loadings FX and M (@= 0). 
F r o m  the first of Equations (24), the corresponding deflection is: 

w = -2.09 x los6 F = -2.09 x (297) 

= -0.00062 in. 

This deflection occurs  at a radius b = 3. 125 inches f r o m  the pivot and causes a A @  of: 

- 0.00062 
A @  = Z 0.0002 radian (40 seconds) . 

3. 125 

Deflections and s t r e s s e s  at the three mounting supports were a l so  considered. 
Disregarding local effects due to  i r regular i t ies  in shape of the supports, it was estimated 
that deflections and s t r e s s  would be lower than those calculated above fo r  the trunnion 
supports. 

A lo-pound resolver  is also attached to  the frame.  Although it is of low weight, it 
h a s  a l a r g e  moment arm which causes considerable bending. 
*2000 ps i  were  estimated. 

Bending s t r e s ses  of about 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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The natural frequency of the f r ame  was estimated by inextensional theory (bending 
without stretching of the middle surface). 
The calculations described in Appendix B showed that the frequency of the lowest normal  
mode would be: 

This theory has  been shown to  be conservative. 

F o r  an aluminum 

This frequency is 
be expected. 

shell with t = 0.05 inch and a = 9. 75 inches the estimated frequency is: 

f = 350 cycles per  s econd .  

sufficiently high that very l i t t le effect on the system frequency would 

The above analyses of deflection, s t resses ,  and frequency in the f r ame  have been 
greatly simplified. Stiffening effects of the flanges and other local reinforcements have 
been neglected. 
should be lower and the frequency should be higher than the calculated values presented. 
The simplified analyses should be considered conservative. Theoretical resu l t s  should 
be confirmed by experiment. 

Because of this added stiffness, the deflections and s t r e s ses ,  in general  

This is the emphasis of the work now under way. 

I N S T I T U T E  
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DESIGN SYNTHESIS USING A DIGITAL COMPUTER 

Mathematical Analysis 

The approach used in the analysis of gimbal rings is based on the stiffness-matrix 
This method was  designed to permit the analysis of complicated, highly r e -  

However, it was  particularly useful for the present problem, since 
method. 
dundant structures.  
both the analysis of the s t r e s ses  and the calculation of the frequency of the vibration of 
each ring could be car r ied  out with this method. 

The stiffness-matrix method is applied to calculating the deflection and s t r e s ses  
in the nonuniform ring in the following way. 
number of short  segments. 
mation, they may be considered as straight beams. 
is possible to w r i t e  a se t  of 12 equations relating the forces and moments on each end of 
the beam to the deflections of each end of the beam. 

The ring is assumed to  be broken up into a 
These segments a r e  short  enough so  that, to a good approxi- 

Now f rom simple beam theory, it 

In the matr ix  equation: 
c A 

Fi = Ki ui 

' -1: --1- - - - - - L  - - - - t m v e  r n a n n ~ t i x r p l l r  a n d  K i s  the - - -  I .. L 

r-- - - - CULU u a L c  ULG A- AVIU --A_- ---- --- 
12 x 12 "stiffness matrix" for the beam segment. In the inverse equation: 

-L A 

ui = Kf Fi , 

the matrix K: is called the llflexibility matrix". It is apparent that KT is the inverse of 
Ki . 

The stiffness-matrix approach consists of appropriately combining the stiffness 
Then matr ices  of each beam element to obtain a stiffness matr ix  for the entire ring. 

A -c 

F = K u ,  

where F is the set  of loads and moments applied to the ring at the points at  which the 
segments a r e  joined (hereafter these points wi l l  be called "nodes") and 
displacements of the node points. 
e r a l  K will be of the order  of s i x  t imes the number of node points (less the number of 
physical constraints put on the system). 

is the vector of 
In gen- K i s  the over-all stiffness matrix of the ring. 

In calculating the frequency of the free  vibrations of the ring, the stiffness matr ix  
is a part of the mat r ix  equation: 

M G + K u = O ,  

where M is the mass  matrix of the system. 
t ra ted at the nodal points.) 

(All the masses  a r e  assumed to be concen- 

This section of the report  gives an outline of construction of the stiffness matr ix  
starting with the derivation of the stiffness mat r ix  of a simple beam. 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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Since the beam segments are short ,  the contribution of shear  deflection to the 
bending of the beam wil l  be included. 
resul ts  obtained for the frequencies of vibration may be a little high because of this 
assumption. ) 

The rotational inertia t e r m  was neglected. (The 

The vector representation of the components of the forces ,  moments, displace- 

(The right-hand rule is 
ments,  and rotations is shown in Figure 8. 
i f  they lie in the positive direction of the corresponding axes. 
assumed for the vector representation of the moments and displacements. ) 

The vector quantities a r e  assumed positive 

The notation I, and I, will be used for the moments of inertia of the c ros s  section 
of the beam relative to the x and z axes respectively, S is the torsional rigidity of the 
beam, A is the cross-sectional a r ea ,  G the modulus of rigidity, E is Young's modulus, 
and L is the length of the beam segment. The ends of the beam segment a r e  numbered 
1 and 2. The forces,  moments, and displacements a r e  given subscripts 1 and 2 (as in 
Figure 8) referring to the end of the beam to which they correspond. 

Suppose Point 2 is deflected in the z direction by the amount w2 with the accom- 
panying "2 rotation, keeping the displacement in the other directions zero (including all 
displacements at Point 1). 

Then by Castigliano's theorem the s t ra in  energy of the beam is given by: 

(The second t e r m  represents the so-called "shear deflection" of the beam). 

The deflection of Point 2 in the z direction is then given by: 

Assuming that the c ross  section of the beam segment is uniform: 

Mx2L2 Fz2L3 Fz2L 
2EIx 3EIx AG 

w 2 =  t +-; 

similarly 
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FIGURE 8. FORCES ACTING ON BEAM 1-2 
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Writing these two equations in matr ix  form gives: 

AG 2EIx 

L - 

The 2 x 2 matrix is the flexibility matr ix  for this particular deformation. 
the forces (i. e. , inverting the flexibility matrix) gives: 

Solving fo r  

Fz2 Ixi 1 
Q 

= -  
1 

L 
2 

- -  "2 

L L 
where Q = - t -. 

12EIx AG 

-Mx2 - LFzZ or in matr ix  form: 

Now by equilibrium considerations, F, 1 = -Fz2 and MX1 = 

Substituting this in Equation (27) gives: 

- 1  -L -1 

-1 

-1 

L 
2 

- -  

similar ly  for a u2 and y2 displacement: 
r 

1 

R 
- -  - 

L3 L where R = - t - . 
12E1, AG 

L 1 - -  2 

L L2 E1x - -  -+- 
2 3 AG 

6 

- 
L 
2 
- 

, 
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Again for  equilibrium of the beam it is necessary that: 

o r  in matr ix  form 

F o r  a v2 displacement, 

Fy2 
v2 = - 

AE 
o r  (32) 

For  a rotation p2, 

1 
My2 = s  p2 (33) 

(34) 

or  

The resu l t s  obtained so far can be combined into two matr ix  equations. Combining 
f rom Equations (27), (30), (32), and (34) gives: 

r 
- l o  
R 

AE 
0 -  

L 

0 0 

0 0 

0 0 

- L o  
2R 

0 0 0 

0 0 0 

1 
Q 
- L 

2Q 
- -  

L 
2Q 

-- 
3Q QAG 

0 0 

0 0 

L 

which can be abbreviated as: 
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F r o m  Equations (28),  ( 3  1) , ( 3 4 ,  and (34), the following matrix relation between the forces  
forces  can be obtained: 

- - 
- 1 0 0 0 0 0  

0 - 1  0 0 0 0 

0 0 - 1  0 0 0 

0 0 - L - 1  0 0 

0 0 0 0 - 1  0 

L 0 0 0 0 - 1  
- - 

which is abbreviated as: 

F 1 = B 2 1 F 2  . 
Combining Equations (36) and (38) gives: 

F1 = B21 K22 u2 
o r  

-L -L 

F 1  = K21 u2 

Fx2 

FY2 

Fz2  

Mx2 

MY2 

Mz2 - -  

(37) 

where K21 is the matrix product B21K22. 
shown that: 

By carrying out this multiplication it can be 

1 
R 

0 

- -  

0 

0 

0 

L 
2R 

- 

0 

AE 
L 

- -  

0 

0 

0 

0 

0 0 
c L - -  0 
2R 

0 0 0 0 

L - 1 - -  
Q 2Q 

0 0 

0 
L L2 E I X  - -  - - -  
2Q 6Q QAG 

0 0 -s 0 

0 0 
L2 EI, 0 - - -  
6R QA( 

. .  
u2 

v2 

2 W 

a2 

p2 

y2 . .  

It is necessary a l so  to  use the matrix equation relating the forces  at Point 2 result-  
ing f rom deflections at Point 1 which will be writ ten as: 
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T T F r o m  the theorem of reciprocity, it is known that K 12 = K2 1 where K2 1 indicates 
the transpose of K21. 

This a lso may be verified by considering the forces and moments acting in Fig- 
u re  (8) as was  done in  

F r o m  Equations 

deriving Equations (35) and (41). 

(39) and (40), K21 = B21 K22 S O  that: 

o r  

since K22 is symmetric.  F r o m  Equation (38 ) ,  

substituting this in Equation (43)  gives: 

This gives all the matrix relations between the deformations and forces  at both 
Equations (36),  (39), (43), and (44) can be written in the combined ends of the beam. 

matrix form: 

(45) 

- - L a  -L 

where F1,  F 2 ,  u l ,  and u2 are sixfold vectors, and K..  are 6 x 6 matrices .  
shown in Equation (35) and the other three matrices a r e  calculated f rom K22 f rom the 
relations : 

K22 is 1J 

and 

T 
K11=  B21 K22 B21 - 

The ma t r ix  B21 is shown in Equation (37). 

The ma t r i ces  KZ1, KIZ,  and K1 1 could have been derived f rom a consideration of 
the appropriate forces  and deflections of the beam itself as was done in deriving K22. 
The approach used above w a s  chosen to show how the full 12 x 12 stiffness mat r ix  fo r  a 
beam could be derived using the two 6 x 6 matrices K22 and BIZ.  
f ies  the work of programming the calculations for a computing machine. 

This approach simpli- 
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Now suppose this beam is par t  of a larger  structure.  In order  to combine the de- 
flections and forces for the various beams that make up the s t ructure ,  it is necessary to 
express  all of these deflections and forces  in the same coordinate system. 
complished by multiplying the forces  and deflections by the rotation matrix, obtained as 
follows: 

This is ac-  

Consider two coordinate systems shown below: 

It is known that the components of a vector in the x', y', z '  coordinate system a r e  
related to the components of the same  vector in the (x, y, z) coordinate system by the 
relation: 

X 

Y 

Z 

where 1.. is the cosine of the angle 
1J 

Fxl 

FY 1 [ F Z  1 

lx'x lx'y lx'z 

ly'x 1 y'y ly 'z  

X' 11 Z '  

between the axes indicated by the subscripts.  Thus 

where (Fxvl, F y ~ l ,  FZI1) a r e  the components of the force vector F1 in the over-all co- 
ordinate system of the structure.  Similarly 
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- 1  a 

Combining these last two equations for the sixfold vector F1 and FI gives the relation: 

where 

R =  

F1 = R Fi, (47) 

0 0 0 l x I x  l x l y  lxlz 

0 0 0 l y I x  lYlY l Y I Z  

O O lz'x z'y lz'z 1 0 

The same rotation relation holds between the other sixfold force and displacement vec- 
to rs  re fer red  to the beam and s t ructure  coordinates, that is, 

- - 
F2 = R Fi , 
u ~ = R u ;  
A -b 

u2 = R u> . 
Thus, Equations (36), (39),  (43), and (44) can be written in t e rms  of the s t ructure  co- 
ordinates a s :  

The rotation mat r ix  has the property that 

Thus, premultiplying both sides of Equation (48) by RT gives: 
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In the coordinate system of the s t ructure ,  the analogue of Equation (45) is then: 

where 

4, 

Equation (50) gives the matr ix  equation between the displacements and forces at 
two ends of a beam when these displacements and forces  are related to the coordinate 
system of the over-all structure.  The mat r ix  

1 

will be called the stiffness matr ix  f o r  the Beam (1,2). Once the stiffness matr ices  a r e  
calculated for each beam of the s t ructure ,  it is necessary to combine these matr ices  in 
the proper way to represent the s t ructure  as a whole. The way that this is done can be 
illustrated by the two-member beam shown below. 

Calculating the stiffness mat r ix  of Beam (1 ,2)  gives, a s  in Equation (50) 

For  Beam (2,3), the analogous matr ix  equation is:  
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For  the two-member f rame taken as a unit, the displacements ux must be equal to u i .  
The total forces acting at Point 2 must be the sum of F i a n d  Fi. 
tion for the composite beam is: 

Thus the mat r ix  equa- 

K i  1 

K i  1 

0 

K i  3 

K;13 O I  

[ I .  -1 

This result  can be easily generalized to more  complex s t ructures .  It can be seen 
that, for a given nodal point i of the structure,  the submatrix Kii of the over-all stiffness 
matr ix  wil l  have added into it, one submatrix f rom each of the beams joined to the point 
i. The submatrices K. .  and K.. wil l  be  unique since there  is only one beam connecting 
the point i to  the point J. 

?J J 1  
(If there  is no beam between i and j ,  Kij = Kji = 0.)  

The rules  for  forming the stiffness matrix for a s t ructure  may be summarized as 

Divide the s t ructure  up into a s e t  of beams connected at nodal points. 

Number the nodal points consecuriveiy irom I io ii. 

Parti t ion the over-all 6n x 6n stiffness matrix into 6 x 6 submatrices. 

Calculate the basic 6 x 6 stiffness mat r ix  of the beam connecting the 
i th  to the j th node according to Equation (35). 

Calculate the matr ices  B and R f o r  the Beam ( i , j )  by Equations (37) 
and (47) .  

Calculate the four submatrices Kii, Kij, K;i, and K!. for  the Beam (i, j) 
f r o m  Equation (50). 

Add the submatrices Kii and K!. into the (i,i) and (j , j)  submatrices,  
respectively,  of the over-all stiffness matrix. 

S tore  the submatrices KT. and KI. in the ( i , j )  and (j , i)  submatrix slots 
of the over-all stiffness matrix.  

Pe r fo rm Steps (4) through (8) for all of the beams of the s t ructure .  

JJ  

JJ 

1J J 1  

These  operations give the stiffness matrix relating the forces  and deflections of 
the complete s t ructure  according to the relation: 

F = K u ,  
d 4 

6 

where F is the 6n-fold vector of the external loads applied at the n nodes of the s t ruc-  
t u re  and u i s  the 6n-fold vector of the displacements of the nodes of the structure.  
the 6n x 6n stiffness mat r ix  of the structure. 
ber  of constraints  on the f r ame  to keep it from moving as a rigid body. 
s t ra in ts  consis t  of setting some components of the displacement vector equal to zero,  the 

a 
K is 

(It is necessary  to apply a sufficient num- 
If these con- 
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corresponding rows and columns of the stiffness matr ix  are omitted. 
discussion will re fe r  to  such a "reducedtt stiffness matrix. ) 

The remaining 

If the external loads on the s t ructure  a r e  known and it is desired to find the dis- 
placements of the nodes of the s t ructure ,  it is necessary to  invert the reduced stiffness 
matr ix  to  obtain: 

The process of inverting K is a standard matr ix  operation that is easily performed 
on a computer. 

A computer program w a s  written to implement the construction of the stiffness- 
matr ix  calculation. 
ifying the numbers and location of the nodes of the s t ructure ,  the orientation of the 
beams connecting the nodes , and the geometrical parameters  of each beam such as A, 
I,, Iy, etc. , which enter the stiffness matr ix  in Equation (35). 

Briefly, this program formed the stiffness matrix f rom input spec- 

F r o m  the input data , the computer program automatically se t s  up the stiffness 
matr ix  and inverts it. 
calculate the nodal displacements of the s t ructure  f rom one o r  more  sets of exterior 
loads. 

This flexibility matr ix  K-1 can then be used as in Equation (51) to  

Once the displacements are calculated, the s t r e s ses  in each beam segment of the 
s t ructure  can easily be calculated from the differences between the displacements of the 
two nodes which lie at its end points. Starting with the two sixfold displacement vectors 
ui and u.  of the ith and jth nodes expressed in the coordinate system of the s t ruc ture ,  the 

forces  F j  f o r  the Beam Bij (the beam connecting the ith and j th nodes) a r e  given by the 
equation: 

a 1  * 
J 

where Rij  is the rotation mat r ix  for the Beam Bi. and K - .  is the mat r ix  K22 of Equa- 
tion (43)  for the beam. The forces F j  as calculaied by #quati? (52) represent  the forces 
applied to the jth end of B.. with the i th end built in (i. e.  , the F j  correspond t o  forces 
applied to  the free end of a cantilever beam). 1J 

-.- 
The s t resses  at any point of the beam a r e  calculated f rom F. using elementary 

J beam theory. 

A subroutine was written to  have the digital computer perform the calculation of 
s t r e s ses  in the frame members  f rom the displacement vector 
obtained. 

once it had been 

It was  mentioned at the beginning of this section that the stiffness mat r ix  could be 
used to calculate the frequencies of a vibrating f rame.  In this approach to the vibration 
problem, the frame is considered to  be a multiple degree of freedom system with all of 
the m a s s  concentrated at the nodes. 
of the springs (beams) connecting the masses .  
tions of this system is then: 

The stiffness mat r ix  represents  the aggregate of a l l  
The frequency equation f o r  f ree  vibra- 

M t K u = 0, 
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where ii i s  the acceleration vector of all the nodes and M is the mat r ix  of the masses  
associated with each node. 
that the frequency equation is: 

(M is a diagonal matrix.)  F o r  harmonic motion G = u2 u so  

(a2 u - K) u = 0 . 
The frequencies of the modes of vibration of the s t ructure  a r e  thus the solutions 

for  a2 that make the mat r ix  (a2 u - K) singular". 
matr ix  theory. 

This is the eigenvalue problem of 
The solution of this problem was obtained also with a computer program. 

The actual solutions obtained for the s t r e s ses  and frequencies of the gimbal rings 
are reported elsewhere in this report .  

Analysis of Computer Output Data 

The data generated by the computer consisted of the following: 

(1) Displacements and rotations at the 24  node points for each force vector 
considered 

( 2 )  Membrane, bending and shearing s t r e s ses ,  and various combinations 
of these s t r e s ses ,  at the 24  node points for each force vector 
considered 

(3) The lowest response frequency of the gimbal for each mass vector 
considered. 

The analysis consisted of plotting the s t r e s ses  and deflections for each acceleration 
vector and modifying the section where necessary.  A new set of input data resulted f rom 
this analysis and was  used for  the next iteration. 
high, the section modulus was  increased, and at points of low s t r e s s  the section modulus 
w a s  decreased. This process  was repeated until the design proposed in the drawings at- 
tached was reached. 
design is shown in Appendix C. 

At points where the s t r e s s e s  were too 

The s t r e s ses  and deflections for an 8-g l inear acceleration in this 
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A =  Area of section 
Sr= Section modulus 

about r axis 
Sz = Section modu Ius 

about z oxis 

Acceleration - 
a 

A43519 

Element A 

FIGURE A-1. GENERALIZED LOADING CONDITIONS FOR RING 
SUBJECTED TO INERTIAL FORCES 
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Positive direction of 
all forces as shown 

A 43520 

FIGURE A-2. INERTIAL FORCES DUE TO ACCELERATION IN 
PLANE OF RING 

I N S T I T U T E  

- 
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TABLE A- 1. EQUATIONS FOR Mz 

Location 
(a) 9 MZ 

d e g r e e s  x sin 0 cos \v x cos 8 cos Y 

0-A a ' -0. 182FxR-0. 07 lwR2t0. 137My to. 500Mx 

OtAa -0.  182FxR-0. 07 lwR2t0. 137My -0. 500Mx 

15 -0. 063FxR-0. 053wR2t0. 1 15My -0. 066FxR-0. 126wR2-0. 335Mx 

30 to. 026FxR-0. 009wR'tO. 052My -0. 093FxR-0. 206wR'-0. 182Mx 

45 to. 079FxRt0. 037wR2-0. 050My -0. 079FxR-0. 2050R2 -0. 050Mx 

60 to. 093FxRt0. 085wR2-0. 182My -0. 026FxR-0. 092wR2 -0. 052Mx 

75 to. 063FxRt0. 145wR2 to. 1 15Mx 

90-Aa -0.500My to. 182FxRt0. 500wR2t0. 137Mx 

to. 066FxRt0. 079wR'-0. 335My 

90tAa to. 500My to. 182FxRt0. 500wR2t0. 137Mx 

TABLE A-2. EQUATIONS FOR Tt 

Location 
(a) 9 Tt 

d e g r e e s  x sin 0 cos Y x cos 0 cos Y 
~ 

0-Aa 

OtAa 

15 

30 

45 

60 

75 

90-A a 

90-tAa 

~ ~~ ~ 

M 
to. 318Fxt0. 500wRtO. 637$ 

to. 318Fxt0. 500wRtO. 63& 

to. 438Fxt0. 551wRt0. 6 1 5 3  

to. 526Fxt0. 695wRtO. 552% 

-0. 579Fxt0. 902wRt0.45OJ 

to. 593Fxt1. 156wRt0. 3 1 q  

to. 563Fxt1. 392wRtO. 165-$ 

R 

R 

R 
M 
R 

M 

M 

to. 500Fxt 1. 57 1wR 

to. 500Fxt 1. 57 lwR 

4-0. 500Fx 

-0. 500Fx 

-0. 563Fx-0. 385wRtO. 165- M x  

-0.  593Fx-0. 706wRtO. 318- M X  

-0. 579Fx-0. 913wRtO. 450- MX 

-0. 526Fx-0. 956wRt0. 552- M X  

-0. 438Fx-0. 822wRtO. 615- M X  

-0. 318Fx-0. 500~RtO. 637- Mx 

-0. 318Fx-0. 500wRtO. 637- MX 

R 

R 

R 

R 

R 

R 

R 
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TABLE A-3. EQUATIONS FOR V, 

Location I, 

V r  (a) 9 

d e g r e e s  x s in  8 cos Y x cos 8 cos Y 
. _  

MX 
0-Aa -0. 500Fx -0. 318Fx-0. 5OOwRtO. 6 3 7 ~  

O t A a  

15 

30 

45 

60 

75 

t o .  500F, 
-0.318F~-0.500wRtO. 637- MX 

R 
M 

-0. 179FX-0. 238wRt0. 615- MX 

t o .  274Fxt0. 203wR-0.318-$- R 

t o .  128F,tO. 203wRtO. 450- MX 

t o .  402F,tO. 123wR-0. 16- 
R 

M MX -0 .  026FX-0. 0 7 9 ~ R t 0 .  552- 

M 
R t o .  128Fxt0. 201wR-0.450Y 

-0. 026F,tO. 090wR-0.552J 

-0. 179Fx-0. 145wR-0. 615-& 

R 

R 
M MX 

M MX 

t o .  274FXt0. 566wRtO. 3 1% 

t o .  402F,tO. 956wRt0. 1 6 5 ~  

M 

M 
9 0-Aa -0. 318Fx-0. 500wR-0. 637$ t o .  50OFXt1. 571wR 

9OtAa -0. 318FX-0. 500wR-0. 637* -0 .  500F,- 1. 571wR 

~~ 

TABLE A-4. EQUATIONS FOR M r  

LOC ation, 
(a) 9 M r  J 

d e g r e e s  x sin Y 

0 - A a  t 0.500 F,R t 0.571 wR2 t 0. 500 My 

t 0. 500 FxR t 0.571 wR2 t 0. 500 My O t A a  

15 

30 

t 0.353 FxR t 0.518 wR2 t 0.483 My t 0. 130 M x  

t 0. 183 F,R t 0. 371 wR2 t 0.434 My t 0. 250 Mx 

45 t 0. 111 a2 t 0.354 My t 0. 354 M, 

60 - 0. 183 FxR - 0. 214 wR2 t 0. 250 My t 0.434 M, 

- 0. 353 F,R - 0. 512 wR2 t 0. 130 My t 0.483 MX 

- 0.500 FXR - 1.000 OR 2 t 0. 500 M, 

- 0. 500 F,R - 1.000 uR2 t 0. 500 M, 

75 

90 - A a  

9 0 t A a  
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Acceleration 
5 sin J/ 

I ‘Y 
FY 

Positive direction of a l l  
forces as shown 

A 43521 

FIGURE A-3. INERTIAL FORCES DUE TO ACCELERATION 
PERPENDICULAR TO PLANE OF FUNG 
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TABLE A- 5. EQUATIONS FOR Mt 

Location 
(a) J Mt 

degrees x sin Y 
- 0. 500 Mx 0 - h a  

O t A a  t 0.500 M, 

15 

30 

- 0. 113 FxR t 0. 154 wR 2 t 0.483 Mx - 0. 130 My 

- 0. 183 F,R t 0.261 wR2 t 0.434 M, - 0.250 My 

- 0. 207 F,R t 0. 326 wR2 t 0. 354 M, - 0.354 My 

- 0. 183 F,R t 0. 317 wR2 t 0.250 M, - 0.434 My 

- 0. 113 F,R t 0. 210 wR2 t 0. 130 M, - 0.483 My 

45 

60 

75 

9 0 - A a  - 0.500 My 

9 0 t A a  t 0. 500 My 

TABLE A-6. EQUATIONS FOR V, 

Location 

degrees x sin \y 
(4 J V Z J  

0 - A a  - 0. 500 Fx 

O t A a  t 0. 500 F, 

t 0. 500 F, t 0. 262 wR 15 

t 0. 500 F, t 0.524 wR 30 

45 t 0. 500 F, t 0.786 wR 

60 t 0. 500 F, + 1.048 wR 

t 0. 500 F, t 1. 310 WR 75 

t 0. 500 F, t 1.571 wR 9 0 - A a  

90 t A a  - 0. 500 F, - 1.571 wR 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  



APPENDIX B 

CALCULATIONS O F  FRAME STRESSES AND DEFLECTIONS 
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The calculations of the deflections and stresses f rom the loadings of Figure 7 a r e  

APPENDIX B 

CALCULATIONS OF FRAME STRESSES AND DEFLECTIONS 

I Axis ymmet r i c Loading 

The effects of the axisymmetric loading FZ of F igure  7 were  found f rom the curves 

The pivot support is assumed to be infinitely rigid compared 
of influence numbers in Reference 6". 
down shown in F igure  B-1. 
to  the shell. 
the boundary equations become: 

Solution of the problem is  aided by the break- 

Thus, the slope and the horizontal deflection at the support a re  zero and 

WL (Fz) i- wb (ab) + wb(Mb) = 0 (B- 1) 

FIGURE B-1. BREAKDOWN O F  PROBLEM FOR AXISYMMETRIC 
F, LOADING ON FRAME 

b - 3.125 
,l 0.386 F o r  the parameters  b = 3.125 inches and ,l = 0.386 inches, the ratio - - - = 8.1 

F r o m  Reference (6) ,  Figure 10: 
8. 

0. 12 FZ a 10.5 Fz a 
W& (FZ) = - Y Ab (Fz) = - 

27-rHj 27rb Et 

F r o m  Reference (6),  Figure 12: 

Where 

Et3 
D = flexural rigidity = = 117 lb-in. 

12 (1- p q  
%References are listed on page 39. 
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= 0.386 in. -(at 4 = characterist ic length = 
4 112 (1 - p2) 

H = character is t ic  force = Et2 = 7650 lb. 
1 1 2  (1 - p2) 

Substituting the above expressions for  wb and Ab in Equations (B- 1) and (B-2) gives: 

M b = O .  
10.5 FZ a t 11.665 a b  b t 0.95 b w) 

27rb t 
(B-4) 

Simultaneous solution of (B-3) and (B-4) for  b = 3. 125, a = 9.75, and p = 0.33 yields: 

Mb = Ma a t  b = 0.0026 FZ 

Qb = 0.129 FZ . 
F r o m  Qb and Fz,  

N a  at b = Qb cos $ 0  - FZ sin $ 0  

= Qb cos 18.7 - FZ sin 18.7 

= - 0.4455 F Z  

F r o m  Figures  10 and 12 of Reference (5): 

0. 18 FZ a 0.18 a b  0.95 Mb a 2  
w = -  t t 

27rH H D 

= - 0.037 x 10-4 F~ 

Thus deflection w = - 0.037 x Fz, 

St re s s  C T ~  = T %5?2 t 3 = T 6. 24 FZ - 8.90 FZ 
t2 t 

S t r e s s  OB = T *e t EQ = T 0.864 FZ - 2.94 FZ 
t Z  t 

Antime t r ic  Loading 

Influence coefficients fo r  asymmetr ic  loading not tabulated like they a r e  f o r  
axisymmetr ic  loadings. 
had to be employed to derive the expressions f o r  deflections and s t r e s s e s  for  the anti- 
met r ic  loading FX of F igure  7. 

Therefore ,  the basic  theories  applicable to spherical  shells 

Following the common approach to solution of shell  
B A T T E L L €  M E M O R I A L  I N S T I T U T E  
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problems, the membrane theory was used to balance the external force Fx and a 
general theory (membrane plus bending) was used to match the boundary conditions. The 
general theory used was that given by Steele(7). 

The loading F x o f  Figure 7 is antimetric (cosine - sine variation). Thus assume: 

u = deflection in 8 direction = u1 sin 8 

v = deflection in @ direction = v1 cos 8 

w = deflection in normal direction = w1 cos 8 

= membrane force in 8 direction = Ne1 cos 8 

N@ = membrane force  in @ direction = N@1 cos 8 

Ne$ = membrane shear  force = Nt)Qlsin 8 

M e  = bending moment in 8 direction = Me1 cos 8 

M@ = bending moment in @ direction = M@1 cos 8 

Me@ = twisting moment = MQQ1 sin 8 

Q = t ransverse  shear  force = Q Q ~  cos 8. 

The membrane forces  which balance the external force FX are :  

@ 

05-51 

The membrane deflections, found from an integral solution using the s t r e s s -  s t ra in  rela- 
tions and the above membrane forces ,  a r e :  

1 u1 = 2 (1 + PI FX [+ cos @ - log tan - @ - 2 cos @ log cot 
Et  7~ 2 (B-7) 

w 1 =  2 (1 E t  + p )  % [+ csc  s e c  @ - cot + sin @ log tan (B-9) 

The approximate general  solution of Steele(’) for  a shell with hole a t  the apex and 
closed a t  the other pole gives: 

(B- 10) 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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(B- 11) 

(B-12) 

(B- 13) 

(B-14) 

(B- 15) 

(B- 16) 

(B- 17) 

(B- 18) 

(B- 19) 

The above solution decreases  exponentialy with increasing < where 

The Bessel functions ke i l  and k e r l  and their  derivatives a r e  related to the Bessel 
functions kei and ker  by: 

R A T T E L L E  M E M O R I A L  I N S T I T U T E  
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Values of the functions kei, ke r ,  kei ' ,  and ker '  tabulated in Reference (8) were used for  
calculations. 

The boundary conditions a t  $0 ( see  Figure 7) require that the hoop st rain be zero 
and that the rotation of the boundary be equal to that of a rigid ring, Thus: 

- 0 at  $0 . a w l  
a@ B. C. ( 2 )  w1 cot $ - - - 

Introducing Equations (B-5), (B-13), and (B-14) into the equation for 

into the equa- Boundary Condition ( l ) ,  and Equations (B-9), (B-12), - 
tion for  Boundary Condition (2) ;  and solving simultaneously for  C1 and C2 yields for the 
parameters :  

a(B-9) ,  and a(B-12) 
a@ a$  

D = 117 lb-in. 

= 0.386 in. 

H = 7650 lb  

where 

Substituting these back into the equations for normal deflection w1, membrane forces  
Ne1 and N@1, and bending moments Me  and MG yields: 

~1 -0.  233 X 

H X  
a = -0.240 - 

M$1 = - 0 . 5 9 2 ~  H X  . 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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Thus 

Deflection, w = -0.790 x FX 
-6MQ, NQ, 

t 2  t S t ress ,  cq = + - t - = *3.78 FX t 2.08 FX 

= *l. 53 FX t 0.69 FX . - 6 %  Ne 
St ress ,  a 0  = t - t 2  +t 

Antime t ri c Bending 

The calculation procedure fo r  the antimetric bending moment M (see Figure 7) was 
exactly like that for  the antimetric force FX above, except that the balance of the moment 
M by the membrane theory gave: 

(B- 20) 

(B-21) 

The membrane deflections again found from a n  integral solution using the s t ress -s t ra in  
relations resulted in: 

2 log 2 csc Q, t cos Q, log t an -  - - 
2 2  

1 " 1 = - z  [ 2 2  
IC log t a n 9  t 1 cos Q, 

r 7 

w1 = X  csc Q, - s i n # ]  . 
4 

(B- 22) 

(B- 23) 

(B- 24) 

With the same boundary conditions a s  above, the general  solution gave: 

C1 = -1003 IC 

C2 = -346 K ,  

where 

4 a ( l t p ) M  
Et 7~ b2 

I C =  

= 3.39 x l oe6  M . 
Substituting these back into the equations for normal  deflection w l ,  membrane fo rces  
Ne1 and N$1 and bending moments Me1 and M Q , ~  yielded: 

1 E t  K 
N$1 = - Ne1 = 0.490 y- CL 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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H K  Me1 = -0.380 7 

H K  M@1 = -1.236- a . 

Thus 

Deflection, w = 9. 27 x M 

- 6 M a  N@ 
St ress ,  u@ = t - t - = *7.90 M t 1.71 M 

t 2  t 

Me St ress ,  = t - Ne = k2.43 M tO.56 M - 
t 2  +t 

Natural Frequency 

The natural  frequency of the f rame with attached covers was estimated by the 
inextensional theory f i r s t  used by Lord  Rayleigh(9) in  1881. 
be a complete spherical  shell with two trunnion openings a t  $1 = 20 and $2 = 160 as  
shown in F igure  B-2. 

The frame was assumed to 

FIGURE B-2. ASSUMED SHELL SHAPE OF FRAME FOR 
CALCULATIONOF NATURALFREQUENCY 

It is assumed that the displacements a r e  harmonic functions of the form: 

u = U, (@) sin ne,  v = vn (@) COS ne,  w = wn (@) cos ne; (B-25) 

un, vn, and wn for  inextensional deformations a r e  given by FlGgge [Reference (5), 
page 9 0 1 .  

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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These are:  

@ $I wn = -A (n t cos $) tann- t B (n - cos $I) cotn? . 2 

(B- 26) 

(B- 27)  

(B- 28) 

(For n = 0,  1 these equations represent  rigid-body motions. 
only for  n _ >  - 2 . )  The change in curvature and twist a lso given by FlGgge [Reference (5) ,  
page 3871 are :  

Thus the theory is good 

(B- 29) 

(B-30) n (n2 -1) (A tann% t B cotn$ s in  n 8 . 
a 2  sin' 9 2 K e Q  = 

The potential strain energy of bending f rom Novozhilov [Reference ( l o ) ,  page 471 is: 

The kinetic energy due to vibration is: 

where 

Lagrange's equations of motion state that 

In general  the vibration will be coupled as  indicated by Equations (B-33). To find 
the lowest normal mode corresponding to the A component, le t  B = 0 and le t  

A = A' COS (ut t 7)  . (B-34) 

(B-31) 

(B-32) 

(B-33) 



I B-9 and B-10 I 

The lowest frequency occurs for n = 2 a s  shown by Naghdi and Kalnins and others. 
ting n = 2,  and substituting Equations (B-26) to (B-30) into (B-31) and (B-32) ,  and then 
further substituting the resulting equations into (B- 33) results in: 

Let- t 
I 

The frequency f is 

f = w  = 7 9 . 3 a 7  t JE (1 - , cyc le s / sec .  
2 n  P 

(B-  35)  

(B-36) 
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APPENDIX C 

STRESSES AND DEFLECTIONS IN PROPOSED DESIGN 
FOR AN 8-G LINEAR ACCELERATION 
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APPENDIX C 

STRESSES AND DEFLECTIONS IN PROPOSED DESIGN 
FOR AN 8-G LINEAR ACCELERATION 

Calculation of the Maximum P r i m a r y  Bending S t r e s s  
and Associated Orientation of Acceleration 

The equations shown below may be used in conjunction with the s t r e s s  curves 
included in  this appendix. 

The nomenclature used in these equations is as follows: 

ox = s t r e s s  due to acceleration in the X-direction 

oy = s t r e s s  due to acceleration in the Y-direction 

oZ 

oZY = s t r e s s  due to acceleration in the ZY plane (plane of middle gimbal) 

= s t r e s s  due to acceleration in the Z-direction 

I 

ozx = s t r e s s  due to acceleration in the ZX plane (plane of outer and redundant 
gimbal) 

OM = orientation of acceleration in plane of gimbal which produces the 
maximum s t r e s s  a t  the point under consideration (measured f rom t Z 
axis,  -90" 5 eM < - t 9 0 " )  

Y M  = orientation of acceleration from plane of gimbal which produces the 
maximum s t r e s s  at the point under consideration (measured from plane 
of gimbal, -90" < - Y M 5 t 90"). 

For  the middle gimbal (Figures C-2, C-3 and C-4): 

@M = tan-' (2) 
M ozY = oz cos eM t o sin 8 Y 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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F o r  the outer gimbal (Figures C-6 ,  C-7 and C-8): 

uZ C O S  OM t u sin OM DZX = X 

- 
M aMAX - uZX cos Y M  t cs sin Y Y 

For  the redundant gimbal (Figures C-10, C-11 and C-12): 

aZX = uz C O S  8 t cs sin €3 
M X  M 

cos Y t u s in  Y 
*MAX = 'ZX M Y  M 

B A T T E L L E  M E M O R I A L  ( N s T I T U T E  
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(C-10) 

(C-11) 

(C-12) 
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+Z 

A 43522 

FIGURE C-1. PLATFORM SCHEMATIC SHOWING SUPPORT LOCATIONS 
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TABLE C-1. ABSOLUTE DISPLACEMENTS(a) FOR AN 8-G 
LINEAR ACCELERATION IN t X  DIRECTION 
WITH FLEXIBLE TRUNNIONS 

Displacement, inches 
Middle Outer Redundant 
Gimbal Gimbal Gimbal 

Node X Y Z  X Y Z X Y Z 

1 -3082 
2 -3068 
3 -2747 
4 -2350 
5 - 1950 
6 - 1628 
7 -1614 
8 - 1628 
9 - 195 0 

10 -2350 
11 -2747 
12 -3068 
13 -3082 
14 -3068 
15 -2747 
16 -2350 
17 - 1950 
18 - 1628 
19 - 16 14 
20 - 1628 
21 -1950 
22  -2350 
23 -2747 
24 -3068 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1614 
- 16 12 
- 16 12  
- 1574 
-1511 
- 1474 
- 1415 
- 1474 
-1511 
- 1574 
-1612 
-1612 
- 16 14 
-1612 
- 16 12 
- 1574 
-1511 
- 1474 
- 1415 
- 1474 
-1511 
- 1574 
-1612 
-1612 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
t112 
t118 

t 8  1 
t 4 2  

-1 
0 

t 1  
-42 
-8 1 

-118 
-112 

0 
t112 
t118 

t 8 1  
t 4 2  

-1 
0 

t 1  
-42 
-8 1 

- 118 
-112 

- 1415 
-636 
-173 
t 7 5  
t 6 9  

-3 
0 

-3 
t 6 9  
t 7 5  

- 173 
-636 

- 1415 
-636 
- 173 
t 7 5  
t 6 9  

-3 
0 

-3 
t 6 9  
t 7 5  

- 173 
-635 

0 
7 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
-3 

t323  
t597  
t578 
t428 

0 
-428 
-578 
-597 
-323 

t 3  
0 

-3 
t323  
t597 
t578  
t428  

0 
-428 
-578 
-597 
-323 

t 3  

(a) Displacement of neutral axis. 
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TABLE c-2. ABSOLUTE DISPLACEMENTS(~) FOR AN 8 - ~  
LINEAR ACCELERATION IN t Y  DIRECTION 
WITH FLEXIBLE TRUNNIONS 

Displacements, inches 
Redundant Middle Outer 

Gimbal Gimbal Gimbal 
Node X Y Z X Y z x  Y Z 

1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 

10 0 
11 0 
12 0 
13 0 
14 0 
15 0 
16 0 
17 0 
18 0 
19 0 
20 0 
21 0 
22 0 
23 0 
24 0 

-5325 
-525 1 
-5171 
-5086 
-5039 
-5 042 
-5039 
-5 042 
-5039 
-5086 
-5171 
-525 1 
-5325 
-525 1 
-5 17 1 
-5086 
-5039 
-5 042 
-5039 
-5042 
-5039 
-5 086 
-5171 
-525 1 

0 
0 

-39 - 107 
- 158 - 146 

0 
t 146 
t 158 
t 107 

t 3 9  
0 
0 
0 

-39 
- 107 
- 158 
- 146 

0 
t 146 
t 158 
t 107 

t 3 9  
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-5 039 
-5 024 
-4856 
-4642 
-4339 
-4183 
-417 1 
-4183 
-4339 
-4642 
-485 6 
-5 024 
-5039 
-5 024 
-4856 
-4642 
-4339 
-4183 
-417 1 
-4183 
-4339 
-4642 
-4856 
-5024 

0 
0 
0 
0 
0 
0 
0 
C 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-4171 
-4066 
-2955 
-1714 

-599 
- 199 

0 
- 199 
-599 

-1714 
-2955 
-4066 
-4171 
-4066 
-2955 
- 17 14 

-599 
- 199 

0 
- 199 
-599 

-1714 
-2955 
-4066 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

~ ~ ~~~ ~~ 

(a) Displacement of neutral axis. 
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TABLE C-3. ABSOLUTE DISPLACEMENTS(a) FOR AN 8-G 
LINEAR ACCELERATION IN t Z  DIRECTION 
WITH FLEXIBLE TRUNNIONS 

Displacement, inches 
Middle Outer Redundant 
Gimbal Gimbal Gimbal 

Node X Y Z X Y Z X Y Z 

(a) Displacement of neutral axis. 

1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 

10 0 
11 0 
12 0 
13 0 
14 0 
15 0 
16 0 
17 0 
18 0 
19 0 
20 0 
21 0 
22 0 
23 0 
24 0 

0 
t 150 
t 162 
t111  

t 4 2  
-1 

0 
t 1  

-42 
-111 
- 162 
-150 

0 
t 150 
t 162 
t111  

t 4 2  
-1 

0 
t 1  

-42 
-111 
- 162 
- 150 

- 1562 
- 1559 
- 1562 
-1516 
- 1429 
- 1345 
-1267 
- 1345 
-1429 
-1516 
- 1562 
- 1559 
-1562 
-1559 
- 1562 
-1516 
- 1429 
- 1345 
- 1267 
- 1345 
- 1429 
-1516 - 1562 
- 1559 

0 0 -1267 
t 1  0 -1194 

-27 0 -1133 
-68 0 -1085 
-86 0 -1070 
-77 0 -1077 

0 0 -1075 
t 7 7  0 -1077 
t 8 6  0 -1070 
t 6 8  0 -1085 
t 2 7  0 -1133 

-1 0 -1194 
0 0 -1267 

t l  0 -1194 
-27 0 -1133 
-68 0 -1085 
-86 0 -1070 
-77 0 -1077 

0 0 -1075 
t77  0 -1077 
t86 0 -1070 
t68  0 -1085 
t27  0 -1133 

-1 0 -1194 

0 
-663 
-596 
-294 

-62 
t 1  

0 
-1 

t 6 2  
t294  
t596  
t663  

0 
-663 
-596 
-294 

-62 
t i  

0 
-1 

t 6 2  
t 294 
t 5 9 6  
t663  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1075 
- 1069 
-1017 

-670 
-24 1 
-111 

0 
-111 
-24 1 
-670 

-1017 
-1069 
- 1075 
- 1069 
-1017 
-670 
-241 
-111 

0 
-111 
-241 
-670 

-1017 - 1069 
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TABLE C-4. ANGLE O F  TWIST FOR AN 8-G LINEAR 
ACCELERATION PERPENDICULAR TO 
PLANE O F  GIMBAL WITH FLEXIBLE 
TRUNNIONS 

Angle of Twist, 10-6 radians 
Middle Outer Redundant 
Gimbal Gimbal Gimbal 

Node t X  Acceleration tY Acceleration tY Acceleration 

1 5 02 
2 47 1 
3 249 
4 0 
5 - 249 
6 -47 1 
7 -5 02 

-Symmetric a1 

293 
276 
134 
-42 

- 168 
-230 
-28 1 

-Symmetrical 

892 
8 00 
267 

-332 
-733 

- 1060 
- 1122 

-Symmetric a1 

TABLE C-5. ANGLE O F  TWIST FOR AN 8-G LINEAR 
ACCELERATION PERPENDICULAR TO 
PLANE O F  GIMBAL WITH RIGID 
TRUNNIONS 

Angle of Twist, radians 
Middle Outer Redundant 
Gimbal Gimbal Gimbal 

Node tX Acceleration tY Acceleration tY Acceleration 

1 0 33 24 
2 50 50  88 
3 50 26 22 
4 7 -4 -63 
5 -4 1 - 15 -96 
6 -79 -30 -108 
7 -6 0 25 0 

-Symmetrical -Symmetrical  -S ymme t r i c a1 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  
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TABLE C-6. ABSOLUTE DISPLACEMENTS(a) FOR AN 8-G 
LINEAR ACCELERATION IN t X  DIRECTION 
WITH RIGID TRUNNIONS 

i 
Displacements, inches 

Middle Outer Redundant 
Gimbal Gimbal Gimbal 

Node X Y Z  X Y Z X Y Z 

1 - 1385 
2 - 1372 
3 -1319 
4 -1241 
5 - 1159 
6 -1091 
7 -1079 
8 -1091 
9 -1159 

10 - 1241 
11 -1319 
12 - 1372 
13 - 1385 
14 - 1372 
15 -1319 
16 - 1241 
17 - 1159 
18 -1091 
19 - 1079 
20 -1091 
21 - 1159 
2 2  - 1241 
23 -1319 
24 -1372 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

- 1079 
-1076 
- 1075 
-1031 

-960 
-9 18 
-855 
-9 18 
-960 

-1031 
- 1075 
- 1076 
- 1079 
- 1076 
- 1075 
-1031 

-960 
-9 18 
-855 
-918 
-960 

-1031 
- 1075 
- 1076 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
t 134 
t137  

t 9 3  
t 4 7  

0 
0 
0 

-47 
-93 

- 137 
- 134 

0 
t 134 
t 137 

t 9 3  
t 4 7  

0 
0 
0 

-47 
-93 - 137 

- 134 

-855 
-243 
t18  
t 7 2  
t 2 3  

-3 
0 

-3 
t 2 3  
t 7 2  
t18 

-243 
-855 
-243 
t18  
t 7 2  
t 2 3  

-3 
0 

-3 
t 2 3  
t 7 2  
t18  

-243 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
-6 

t 174 
t 2 2 7  
t 127 

t 6 9  
0 

t 6 9  - 127 
-227 
- 174 

t 6  
0 

-6 
t 1 7 4  
t227  
t 127 

t 6 9  
0 

-69 
-127 
-227 
- 174 

t 6  

(a) Displacement of neutral axis. 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  



c - 2 0  

TABLE C-7. ABSOLUTE DISPLACEMENTS(a) FOR AN 8-G 
LINEAR ACCELERATION IN tY DIRECTION 
WITH RIGID TRUNNIONS 

Displacements, inches 
Middle Outer Redundant 
Gimbal Gimbal Gimbal 

Node X Y Z X Y z x  Y Z 

1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 

10 0 
11 0 
12 0 
13 0 
14 0 
15 0 
16 0 
17 0 
18 0 
19 0 
20 0 
21 0 
22 0 
23 0 
24 0 

- 1254 
- 1176 
- 1085 

-985 
-928 
-930 
-927 
-930 
-928 
-985 

- 1085 
-1176 
- 1254 
- 1176 
-1 085 

-985 
-928 
-930 
-927 
-930 
-928 
-985 

-1085 
-1176 

0 
t 2  

- 45 
-126 
- 190 
-181 

0 
t 181  
t 190 
t 126 

t 4 5  
-2 

0 
t 2  

-45 
-126 - 190 
-181 

0 
-1-181 
t 190 
t 126 

t 4 5  
-2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-927 
-9 14 
-873 
-82 1 
-774 
-73 1 
-7 19 
-73 1 
-774 
-82 1 
-873 
-9 14 
-927 
-9 14 
-873 
-82 1 
-774 
-73 1 
-719 
-73 1 
-774 
-82 1 
-873 
-9 14 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-7 19 
-638 
-454 
-254 

-92 
- 18 

0 
- 18 
-92 

-254 
-454 
-638 
-7 19 
-638 
-454 
-254 

-92 - 18 
0 

- 18 
-92 

-254 
-454 
-638 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

(a) Displacement of neutral axis. 



C-21 and C-22 

TABLE C-8. ABSOLUTE DISPLACEMENTS(a) FOR AN 8-G 
LINEAR ACCELERATION IN t Z  DIRECTION 
WITH FUGJD TRUNNIONS 

Displacements, inches 
Middle Outer Redundant 
Gimbal Gimbal Gimbal 

Node X Y Z X Y Z X Y Z 

1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 

10 0 
11 0 
12 0 
13 0 
14 0 
15 0 
16 0 
17 0 
18 0 
19 0 
20 0 
21 0 
22 0 
2 3  0 
24 0 

0 
t 4 2  
t 6 1  
t 5 2  
t 2 3  

-2  
0 

t 2  
-23 
-52 
-6 1 
-42 

0 
t 4 2  
t 6  1 
t 5 2  
t 2 3  

-2 
0 

t 2  
-23 
-52 
-6 1 
-42 

-963 
-96 1 
-967 
-954 
-9 14 
-86 1 
-796 
-861 
-9 14 
-954 
-967 
-96 1 
-963 
-96 1 
-967 
-954 
-9 14 
-86 1 
- 796 
-86 1 
-9 14 
-954 
-967 
-96 1 

0 
t 3  
-9 

- 13 
-3 
t 3  

0 
-3 
t 3  

t 1 3  
t 9  
-3 

0 
t 3  
-9 

- 13 
- 3  
t 3  

0 
-3 
t 3  

t 1 3  
t 9  
-3 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-796 
-739 
-707 
-697 
-700 
-702 
-700 
-702 
-700 
-697 
-707 
-739 
-796 
-739 
-707 
-697 
-700 
-702 
-700 
-702 
-700 
-697 
-707 
-739 

0 
-365 
-380 
-207 

-46 
t 2  

0 
-2  

t 4 6  
t207 
t380  
t365 

0 
-365 
-380 
-207 

-46 
t 2  

0 
- 2  

t 4 6  
t207 
t380  
t365 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-700 
-694 
-699 
-497 
- 196 

-95 
0 

-95 
- 196 
-497 
-699 
-694 
-700 
-694 
-699 
-497 
- 196 

-95 
0 

-95 
- 196 
-497 
-699 
-694 

(a) Displacement of neutral axis. 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  



APPENDIX D 

PHYSICAL PROPERTIES O F  MIDDLE, 
OUTER, AND REDUNDANT GIMBALS 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  



D- 1 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  



D-2 

TABLE D- 1. NODE COORDINATES AND MASSES(a) 

Mass  
2 X J  Y, ZJ lb-sec 

Node inc he s inches inc he s inches 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 

A. Middle Gimbal 

0 -6.25 0 98.00 
0 -6.25 t 2 . 7 5  4. 16 
0 -5.65 t 3 . 8 6  1. 63 
0 -4.83 t 4 . 8 3  1. 48 
0 -3.86 t 5 . 6 5  1. 63 
0 -2.75 t 6 . 2 5  4. 16 
0 0 t 6 . 2 5  70 .60  

Symmetr ical  about Y and Z axis 

B. Outer Gimbal 

0 0 t 5 .  19 46.50 
-2.56 0 t 5 .  19 3. 19 
-3.56 0 t 4 . 6 8  1. 96 
-4.38 0 t 3 . 9 2  1 .96  
-5.00 0 t 3 . 0 0  2. 03 
-5.88 0 t 2 . 2 5  3 .33  
-5.88 0 0 47.60 

Symmetr ical  about X and Z axis 

C.  Redundant Gimbal 

-7.63 n 0 81.40 
-7.63 0 -4.25 8.  32 
-6.48 0 -5.86 5.46 
-5 .00  0 -7.17 5 .46  
-3.25 0 -8.13 4.28 
-2.25 0 -8.63 4 .51  

0 0 -8.63 61.50 
Symmetr ical  about X and Z axis 

(a) Mass of inner gimbal = 662 x 



D-3 

TABLE D-2. GEOMETRICAL PROPERTIES O F  MIDDLE 
GIMBAL 

WY 
LY A, I, J I, 9 l o 6  in- lb  

Beam inches  inches2 inches4  i n c h e s 4  radians 

A. P r o p o s e d  Des ign  

1-2 2 . 7 5  1 .780  5 .000  0.2500 2 . 0 0  
2-3 1 .26  0.683 0.479 0.0282 0 .70  
3 -4 1 .27  0 .683  0.479 0 .0282 0 . 7 0  
4-5 1.27 0 .683  0.479 0 .0282 0 .70  
5-6 1 .26  0 .683  0.479 0.0282 0.70 
6-7 2.75 1.780 5 .000  0.2500 2 . 0 0  

B .  P r e s e n t  Des ign  

1-2 2 .75  2 .  32 15. 00 0 . 2 9 0  4 . 8 0  
2-3 1 .26  2. 32 5 . 1 0  0 .100  6 .70  
3-4 1. 27 2. 32 5 . 1 0  0 .100  6 .70  
4-5 1 .27  2 . 3 2  5 . 1 0  0 .100  6 .70  
5-6 1 .26  2 .32  5 . 1 0  0 . 1 0 0  6 . 7 0  
6-7 2 . 7 5  2 .32  15.00 0.290 4 . 8 0  

(a) Torsional rigidity: 

T S=g 

8 = total angle of twist of the beam 

T = torque applied at ends of beam. 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  



D-4 

TABLE D-3.  GEOMETRICAL PROPERTIES O F  O U T E R  
GIMBAL 

s, 
L, A, I* I,, l o6  in-lb 

Beam inches inches2  i n c h e s 4  i n c h e s 4  r a d i a n s  

A. P r o p o s e d  Des ign  

1-2 2.56 2.000 5 . 0 0 0  0 .2500 2 . 2 8  
2-3 1 .12  0 .889  0 . 6 7 0  0.0336 1.35 
3-4 1.12 0.889 0.670 0.0336 1.35 
4-5 1 .12  0.889 0 .670  0. 0336 1.35 
5-6 1. 16 2.000 1.000 0.0880 5 . 2 5  
6-7 2 .25  2.000 5.000 0 . 2 5 0 0  2 .60  

B.  Present D e s i g n  

1-2 2 .56  2.32 15. 00 0 . 2 9 0 0  5 . 2 0  
2-3 1 . 1 2  2.32 5 . 1 0  0 .1000 7 .60  
3 -4 1.12  2. 32 5 . 1 0  0.1000 7 . 6 0  
4-5 1 .12  2 .32  5 .10  0 . 1 0 0 0  7 . 6 0  
5-6 1. 16 2. 32 5 . 1 0  0 . 1 0 0 0  7 . 6 0  
6-7 2 .25  2. 32 15 .00  0 .2900 5 . 9 0  

I N S T I T U T E  



D-5 m d D - 6  

TABLE D-4. GEOMETRICAL PROPERTIES O F  REDUNDANT 
GIMBAL 

s, 
L, A, 1x9 I,, lo6  in-lb 

Beam inches inches2 inches4 inches4 radians 

A. Proposed Design’ 

1-2 4.25 1. 88 2. 00 0.1000 2.00 
2-3 1.98 1.44 1. 16 0.0293 0.80 
3-4 1.98 1.44 1.16 0.0293 0.80 
4-5 1.98 1.44 1. 16 0.0293 0 .80  
5-6 1.12 1.88 1.41 0.0610 1 .10  
6-7 2.25 1.88 5.00 0.2500 2.00 

B. Present  Design 

1-2 4.25 3.20 15. 00 0.2500 4 . 8 0  
2-3 1.98 3.20 12.40 0.1270 1.10 
3 -4 1.98 3.20 12.40 0.1270 1.10 
4-5 1.98 3.20 12.40 0.1270 1.10 
5-6 1.12 3.20 12.40 0.1270 2.00 
6-7 2.25 3.20 20.00 0.5000 2.00 

B A T T E L L E  M E M O R I A L  I N S T I T U T E  


